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Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV
SUSY 2013

 = 7 TeVs

 = 8 TeVs

lsp
m⋅-(1-x)

mother
m⋅ = xintermediatem

For decays with intermediate mass,

Only a selection of available mass limits
*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

No superpartners found @ LHC

Why continue interest in SUSY?
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Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV
SUSY 2013

 = 7 TeVs

 = 8 TeVs

lsp
m⋅-(1-x)

mother
m⋅ = xintermediatem

For decays with intermediate mass,

Only a selection of available mass limits
*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

No superpartners found @ LHC

Why continue interest in SUSY?

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 2/ 35



SUSY



- only non-trivial extension of Poincaré-Algebra:[Haag et al., 1975]{
Qα, Q

†
β̇

}
= 2σµ

αβ̇
Pµ

- gauged SUSY implies gravity (SUGRA)[Sohnius, 1985]

- non-negative spectrum of H
- non-renormalization theorems

- most convincing solution to hierarchy problem

This talk: Minimal supersymmetric extension of the SM: MSSM
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Running of the gauge couplings in the MSSM [Dimopoulos et al., 1981]

This suggests [Georgi and Glashow, 1974]

SU(5)/SO(10) →GSM = SU(3)c × SU(2)L ×U(1)Y

SO(10) : 16 → (3,2)1/6 ⊕ (3,1)−2/3 ⊕ (3,1)1/3

⊕ (1,2)−1/2 ⊕ (1,1)1 ⊕ (1,1)0

at a scale MGUT ∼ 1016 GeV.

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 4/ 35



Assume: precision gauge coupling unification is not an accident.
yThroughout this talk:

MSSM + GUT.

Several things have to be explained:

• ‘Doublet-triplet splitting’
Higgs: 10 → (1,2)1/2 ⊕ (1,2)−1/2 ⊕���

��XXXXX(3,1)−1/3 ⊕����XXXX(3,1)1/3

• Proton decay:
• SUSY y
• dim. 5 (Higgsino color triplets)
• dim. 6 (New gauge bosons)

• No flavor and CP violation through sparticle interactions
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Outline

Motivation and general framework X

Basics
What is an R symmetry?
Motivation for R symmetries
Anomaly constraints for discrete R symmetries

Abelian discrete R symmetries
MSSM µ problem and R symmetric solution

Interlude: Non–Abelian discrete flavor symmetries

Non–Abelian discrete R symmetries
A minimal example model

Conclusion
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What is an R symmetry?

“Internal symmetry that does not commute with SUSY”

SUSY:

Q |Boson〉 = |Fermion〉
Q |Fermion〉 = |Boson〉

In general:
Qi (i = 1 . . .N ) can be charged under any internal symmetry B, i.e.

[Qi, B] = (b)jiQj .

If so, we call B an R symmetry.

- Superpartners charged differently.

- Maximal possible R symmetry: U(N ).

Note: by assumption [Q,GSM ] = 0 in MSSM.

throughout this talk: N = 1 SUSY.

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 7/ 35
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Superspace Formalism for N = 1 theories

‘Chiral Superfields’ Φ ⊃ (φ, ψ, F ) living on ‘superspace’ (yµ, θα, θ†α̇),

where θα, θ†α̇ (α = 1, 2) are fermionic coordinates .

Φ(y, θ, θ†) = φ(y) +
√

2θψ(y) + θθF (y).

L of a generic N = 1 field theory defined by three functions of the
superfields:

• K
(
Φi,Φ

∗j) Kähler potential ∈ R
• fab(Φi) Gauge kinetic function (holomorphic)

• W(Φi) Superpotential (holomorphic)

In order to get back to L(x) in component fields, we have to
integrate out the superspace, e.g.

L(x) ⊃
∫
d2θW(Φi) + c.c. .
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R symmetries in superspace

Example:
Consider a global U(1)R with generator BR, i.e. [Q,BR] = qθQ.
Then:

Φ→ ei qΦ αΦ, θ → ei qθ αθ ,

implying
φ→ ei qΦ αφ, ψ → ei (qΦ−qθ)αψ .

Note: For L to be invariant under the symmetry, the
superpotential W(Φi) itself has to be charged, since:

L(x) ⊃
∫

d2θ︸︷︷︸
→e−i 2qθα

W(Φi)︸ ︷︷ ︸ + c.c. .

This is a major difference to non–R symmetries.
Completely analogue also for discrete R Symmetries.
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Motivation for R symmetries
Why are R symmetries interesting?

• Tight connection to SUSY breaking. [Nelson and Seiberg, 1994]

- SUSY broken ⇒ R symmetry exists.
- Spontaneously broken R sym. ⇒ SUSY broken.

• ‘Natural’ solution to the MSSM µ problem only with R
symmetries.(Demanding: GUT+anomaly freedom.) [Babu et al., 2003, Lee et al., 2011b]

• R symmetries not available in 4D GUTs. [Fallbacher et al., 2011]

• Gauged R symmetries? Imply supergravity.
[Freedman, 1977, Castaño et al., 1996]

- Local U(1)R anomalous with standard field content.
[Chamseddine and Dreiner, 1996]

- Local U(1)R problematic, since the appearance of a
Fayet-Illiopoulos term requires an exact global symmetry.

[Fayet and Iliopoulos, 1974, Krauss and Wilczek, 1989, Komargodski and Seiberg, 2009,

Banks and Seiberg, 2011]

⇒ This talk: focus on anomaly free, discrete R symmetries.
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• ‘Natural’ solution to the MSSM µ problem only with R
symmetries.(Demanding: GUT+anomaly freedom.) [Babu et al., 2003, Lee et al., 2011b]

• R symmetries not available in 4D GUTs. [Fallbacher et al., 2011]

• Gauged R symmetries? Imply supergravity.
[Freedman, 1977, Castaño et al., 1996]

- Local U(1)R anomalous with standard field content.
[Chamseddine and Dreiner, 1996]

- Local U(1)R problematic, since the appearance of a
Fayet-Illiopoulos term requires an exact global symmetry.

[Fayet and Iliopoulos, 1974, Krauss and Wilczek, 1989, Komargodski and Seiberg, 2009,
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• ‘Natural’ solution to the MSSM µ problem only with R
symmetries.(Demanding: GUT+anomaly freedom.) [Babu et al., 2003, Lee et al., 2011b]

• R symmetries not available in 4D GUTs. [Fallbacher et al., 2011]

But:
- Very compelling soultion to doublet-triplet splitting from

higher-dim. GUTs. [Kawamura, 2001]

- Lorentz invariance of compact extra dimensions can lead to
(anomaly free, discrete) R symmetries in 4D effective theory.

[Kappl et al., 2011, Lee et al., 2011b, Cabo Bizet et al., 2013, Nilles et al., 2013]

• Gauged R symmetries? Imply supergravity.
[Freedman, 1977, Castaño et al., 1996]

- Local U(1)R anomalous with standard field content.
[Chamseddine and Dreiner, 1996]

- Local U(1)R problematic, since the appearance of a
Fayet-Illiopoulos term requires an exact global symmetry.

[Fayet and Iliopoulos, 1974, Krauss and Wilczek, 1989, Komargodski and Seiberg, 2009,

Banks and Seiberg, 2011]

⇒ This talk: focus on anomaly free, discrete R symmetries.

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 10/ 35



Motivation for R symmetries
Why are R symmetries interesting?
• Tight connection to SUSY breaking. [Nelson and Seiberg, 1994]

• ‘Natural’ solution to the MSSM µ problem only with R
symmetries.(Demanding: GUT+anomaly freedom.) [Babu et al., 2003, Lee et al., 2011b]

• R symmetries not available in 4D GUTs. [Fallbacher et al., 2011]

• Gauged R symmetries? Imply supergravity.
[Freedman, 1977, Castaño et al., 1996]

- Local U(1)R anomalous with standard field content.
[Chamseddine and Dreiner, 1996]

- Local U(1)R problematic, since the appearance of a
Fayet-Illiopoulos term requires an exact global symmetry.

[Fayet and Iliopoulos, 1974, Krauss and Wilczek, 1989, Komargodski and Seiberg, 2009,

Banks and Seiberg, 2011]

⇒ This talk: focus on anomaly free, discrete R symmetries.

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 10/ 35



Motivation for R symmetries
Why are R symmetries interesting?
• Tight connection to SUSY breaking. [Nelson and Seiberg, 1994]

• ‘Natural’ solution to the MSSM µ problem only with R
symmetries.(Demanding: GUT+anomaly freedom.) [Babu et al., 2003, Lee et al., 2011b]

• R symmetries not available in 4D GUTs. [Fallbacher et al., 2011]

• Gauged R symmetries? Imply supergravity.
[Freedman, 1977, Castaño et al., 1996]

- Local U(1)R anomalous with standard field content.
[Chamseddine and Dreiner, 1996]

- Local U(1)R problematic, since the appearance of a
Fayet-Illiopoulos term requires an exact global symmetry.

[Fayet and Iliopoulos, 1974, Krauss and Wilczek, 1989, Komargodski and Seiberg, 2009,

Banks and Seiberg, 2011]

⇒ This talk: focus on anomaly free, discrete R symmetries.

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 10/ 35



Motivation for R symmetries
Why are R symmetries interesting?
• Tight connection to SUSY breaking. [Nelson and Seiberg, 1994]

• ‘Natural’ solution to the MSSM µ problem only with R
symmetries.(Demanding: GUT+anomaly freedom.) [Babu et al., 2003, Lee et al., 2011b]

• R symmetries not available in 4D GUTs. [Fallbacher et al., 2011]

• Gauged R symmetries? Imply supergravity.
[Freedman, 1977, Castaño et al., 1996]

⇒ This talk: focus on anomaly free, discrete R symmetries.

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 10/ 35



Anomaly constraints for discrete R symmetries
• Anomaly calculation directly from the path integral measure:

[Fujikawa, 1980, Araki, 2007]

ψ
R−→ e2π i qψ /M ψ y DψDψ R−→ J−2DψDψ ,

• For anomaly-freedom w.r.t. gauge group G we have to require

J−2 = exp

{
i

2π

M
AG−G−ZR

M

∫
d4x

1

32π2
F · F̃

}
!
= 1 ,

This is trivially fulfilled if

AG−G−ZR
M

= 0 mod
M

2
.

This corresponds to the vanishing of the typical triangle diagrams
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Anomaly constraints for (non–)Abelian discrete (R)
symmetries

Chiral superfield Φ transforming

• in representation d of a non–Abelian discrete R symmetry D,

for Φ → U(d) Φ = e2π iλ(d)/M Φ ,

we define δ := tr[λ(d)] =
M

2π i
ln det U(d) .

• with charge Q under Abelian factors of a gauge group G,

• in representation r under non–Abelian factors of G.

Anomaly coefficients of the a–generated subgroup ZM of D are given as
[Chen, Ratz, AT]

AG−G−ZR
M(a)

=
∑
s

`(r(s)) ·
[
δ(s) − dim(d(s)) δ(θ)

]
+ `(adjG) · δ(θ) ,

AU(1)−U(1)−ZR
M(a)

=
∑
s

(Q(s))2 dim(r(s)) ·
[
δ(s) − dim(d(s)) δ(θ)

]
,

Agrav−grav−ZR
M(a)

= −21 δ(θ) + δ(θ)
∑
G

dim(adjG)

+
∑
s

dim(r(s)) ·
[
δ(s) − dim(d(s)) δ(θ)

]
.
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Discrete Green-Schwarz anomaly cancellation

Even if the anomaly coefficients AGi−Gi−ZRM
6= 0 mod M

2
, we can have an

anomaly-free theory if there is an axion a coupling to

Laxion ⊃ −
a

8
F · F̃ ,

and the axion shifts linearly under the discrete symmetry a → a+∆ such that there
is an extra contribution to J which cancels the anomaly

J−2 = exp

{
i

(
2π

M
AG−G−ZM −4π2 ∆

)∫
d4x

1

32π2
F · F̃

}
.

For this to work with multiple gauge groups Gi (without spoiling gauge coupling
unification) we have to impose ‘anomaly universality’: [Chen et al., 2012a]

AG(i)−G(i)−ZR
M

= ρ mod
M

2
∀ G(i) ,
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Abelian discrete R symmetries

• The MSSM µ Problem

• Only R symmetries can control the µ term

• ZR4 symmetry solution to the µ Problem

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 14/ 35



The MSSM µ Problem

MSSM contains additional massive parameter µ

W ⊃ µHuHd ,

which is SUSY invariant but gives contributions to mh, mZ .

• Expectation: µ ∼MP ,

• Phenomenologically: µ . m���SUSY .

To avoid the hierarchy problem this must have a natural, i.e. symmetry
based, explanation.
Will show:

→ Only R symmetries can control the µ term (assuming: GUT +
anomaly universality)

→ Discrete R symmetry allows for an explanation of µ ∼ m���SUSY .
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Only R symmetries can control µ

Anomaly constraints for (discrete) non-R symmetries (+SU(5) relations):

ASU(3)2−ZM =
1

2

3∑
f=1

(
3q

(f)
10 + q

(f)

5

)
,

ASU(2)2−ZM =
1

2

3∑
f=1

(
3q

(f)
10 + q

(f)

5

)
+

1

2
(qHu + qHd) .

+ Anomaly universality: ASU(3)2−ZM −ASU(2)2−ZM = 0 mod M
2

y
1

2
(qHu + qHd) = 0 mod

M

2
.

Non-R symmetry cannot forbid µ term!
[Babu et al., 2003, Lee et al., 2011a, Lee et al., 2011b]
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R symmetry solution to the µ Problem
The MSSM superpotential, with effective B–L violating terms up
to mass dimension 5:

W = µHuHd + κiLiHu

+Y ije HdLiEj + Y ijd HdQiDj + Y iju HuQiUj

+λ
(1)
ijkLiLjEk + λ

(2)
ijkLiQjDk + λ

(3)
ijkU iDjDk

+κ
(1)
ijklQiQjQkLl + κ

(2)
ijklU iUjDkEl

+κ
(3)
ijkQiQjQkHd + κ

(4)
ijkQiUjEkHd + κ

(5)
i LiHuHuHd

+κ
(6)
ij LiHuLjHu.

• Severely constrained by absence of proton decay.
• Prohibited by MSSM R parity.
• Unexplained small.
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R symmetry solution to the µ Problem
The MSSM superpotential, with effective B–L violating terms up
to mass dimension 5:

W = µHuHd + κiLiHu

+Y ije HdLiEj + Y ijd HdQiDj + Y iju HuQiUj

+λ
(1)
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(2)
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(3)
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+κ
(1)
ijklQiQjQkLl + κ

(2)
ijklU iUjDkEl

+κ
(3)
ijkQiQjQkHd + κ

(4)
ijkQiUjEkHd + κ

(5)
i LiHuHuHd

+κ
(6)
ij LiHuLjHu.
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R symmetry solution to the µ Problem

Search for anomaly-free discrete R symmetry which:

- prohibits µ

- Yukawa couplings

and Neutrino mass

- R parity subgroup



⇒ in SU(5) GUT : ZR4N symmetries.

[Babu et al., 2003, Lee et al., 2011a, Lee et al., 2011b, Chen et al., 2012b]

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 18/ 35



R symmetry solution to the µ Problem

Search for anomaly-free discrete R symmetry which:

- prohibits µ

- Yukawa couplings

and Neutrino mass

- R parity subgroup

 ⇒ in SU(5) GUT : ZR4N symmetries.

[Babu et al., 2003, Lee et al., 2011a, Lee et al., 2011b, Chen et al., 2012b]

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 18/ 35



R symmetry solution to the µ Problem

Search for anomaly-free discrete R symmetry which:

- prohibits µ

- Yukawa couplings

and Neutrino mass

- R parity subgroup

 ⇒ in SO(10) GUT : unique ZR4 .

[Babu et al., 2003, Lee et al., 2011a, Lee et al., 2011b, Chen et al., 2012b]

Andreas Trautner, TUM Non–Abelian discrete R symmetries, 9/30/13 18/ 35



Z
R
4 symmetry solution to the µ Problem

• Pheno: ZR4 must be broken since µ 6= 0.

There are several
mechanisms to re-introduce µ:

- from Kähler-potential K ⊃ κ X
†

MP
HuHd, [Giudice and Masiero, 1988]

- from Superpotential W ⊃ cΩ Ω
M2
P
HuHd,, [Kim and Nilles, 1984]

• Note: The ZR4 is anomaly-free only by Green-Schwarz (GS)
mechanism

- GS axion a contained in superfield S|θ=0 = s+ ia
- Clear from GS cancellation: S enters gauge kinetic function

L ⊃
∫
d2θ S WαW

α

- a = ImS|θ=0 performs the linear shift under the ZR4

⇒ B e
− b
g2
S
HuHd terms allowed in superpotential.

⇒ Z
R
4 broken by non-pertubative (instanton) effect!

• Size? Order parameter for ZR4 breaking is 〈Wh〉, hence

µ ∼ 〈Wh〉/M2
P ∼ m3/2

⇒ µ problem solved.

[Lee et al., 2011a, Lee et al., 2011b, Chen et al., 2012b, Chen et al., 2012a], cf. ‘Retrofitting’ in [Dine et al., 2006]
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Z
R
4 symmetry solution to the µ Problem

Further features:

© R parity contained as unbroken Z2 subgroup of the ZR4 ,

© Automatic: Proton decay by dimension-5 operators under
control:

κ(1), κ(2) ∼
m3/2

M2
P

.

(dominant p decay: dimension-6 operators).

© There are explicit models of orbifold compactifications of the
heterotic string, featuring a MSSM spectrum + discrete R
symmetry at low energy. [Kappl et al., 2011]
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Connection of the R symmetry to other discrete Symmetries?

• Interlude: Non–Abelian discrete flavor symmetries

y Non–Abelian discrete R symmetries
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Interlude: Non-Abelian discrete flavor symmetries
• Popular: Non–Abelian discrete symmetries as flavor

symmetries GF, e.g. S3,A4,T
′,∆(27), . . .

to explain fermion masses and mixing pattern.

[Kaplan 1994, Frampton 1995, Dermisek 1999, Aranda 2000, Carr 2000, Ma 2001, Ma 2002, Babu 2003,

Kubo 2003, Kubo 2004, Kubo 2006, Chen 2004, Lavoura 2005, Dermisek 2005, Caravaglios 2005,

Caravaglios 2005, Grimus 2006, Koide 2006, Teshima 2006, Haba 2006, Tanimoto 2006, Koide 2006,

Morisi 2006, Picariello 2006, Mohapatra 2006, Kaneko 2007, Koide 2007, Chen 2008, Feruglio 2007,

Grimus 2004, Adulpravitchai 2009, Blum 2004, Blum 2008, Everett 2009, Mohapatra 2004, Hagedorn

2006, Cai 2006, Zhang 2007, Ma 2007, Bazzocchi 2008, Ishimori 2009, Meloni 2009, Dutta 2009, Ding

2010, Morisi 2010, Hagedorn 2010, Ishimori 2010, Hirsch 2004, Ma 2004, Chen 2005, Altarelli 2005, Ma

2005, Hirsch 2005, Babu 2005, Zee 2005, Ma 2006, He 2006, Adhikary 2006, Altarelli 2006, Lavoura 2006,

Ma 2007, Hirsch 2007, Luhn 2007, de Medeiros-Varzielas 2007, Altarelli 2007, Yin 2007, Bazzocchi 2008,

Bazzocchi 2008, Honda 2008, Brahmachari 2008, Adhikary 2008, Hirsch 2008, Frampton 2008, Csaki

2008, Altarelli 2008, Morisi 2009, Lin 2009, Altarelli 2009, Morisi 2007, Grimus 2008, Ciafaloni 2009,

Bazzocchi 2009, King 2009, Bazzocchi 2008, delAguila 2010, Kadosh 2010, Antusch 2010, .........]
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Interlude: Non-Abelian discrete flavor symmetries
• Popular: Non–Abelian discrete symmetries as flavor

symmetries GF, e.g. S3,A4,T
′,∆(27), . . .

to explain fermion masses and mixing pattern.
Quarks(CKM) Leptons(PMNS)
θ12 = 13.04◦ ± 0.05◦ θ12 ' 34◦ ± 1◦

θ23 = 2.38◦ ± 0.06◦ θ23 ' 40◦ ± 3◦

θ13 = 0.201◦ ± 0.011◦ θ13 ' 9◦ ± 0.5◦

δ = 1.20± 0.08 rad δ = 5.25+1.16
−2.42 rad

[Beringer et al., 2012, Gonzalez-Garcia et al., 2012, King and Luhn, 2013]
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Interlude: Non-Abelian discrete flavor symmetries
Example: Lepton sector mixing from A4 (≡ (Z2 × Z2) o Z3).

[Altarelli and Feruglio, 2006]

A4 e T T 2 S
1 1 1 1 1
1′ 1 ω ω2 1
1′′ 1 ω2 ω 1
3 3 0 0 −1

charge assignment:(
D1, L1

)
5(

D2, L2

)
5(

D3, L3

)
5

 3.

(
Q1, U1, E1

)
10

}
1(

Q2, U2, E2

)
10

}
1′(

Q3, U3, E3

)
10

}
1′′

Extra: ‘Flavons’ ϕT : 3, ϕS : 3, ξ : 1 , and a Z3 symmetry.

Weff
lept = (ϕTL)E1 + (ϕTL)

′
E2 + (ϕTL)

′′
E3 + ξ (LL) + (ϕSLL) .
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lept = (ϕTL)E1 + (ϕTL)

′
E2 + (ϕTL)

′′
E3 + ξ (LL) + (ϕSLL) .
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Interlude: Non-Abelian discrete flavor symmetries
Example: Lepton sector mixing from A4. [Altarelli and Feruglio, 2006]

spontaneous breaking of GF by
〈ϕT 〉 = (vT , 0, 0)
〈ϕS〉 = (vS , vS , vS)
〈ξ〉 = u
crucial: ‘vacuum alignment’ !

y

Ml = vd
vS

Λ

ye yµ
yτ


Mν =

v2
u

Λ

a+ 2b/3 −b/3 −b/3
−b/3 2b/3 a− b/3
−b/3 a− b/3 2b/3




UTMνU = diag (m1,m2,m3)

UPMNS =


√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2



However: Additional symmetries and fields needed to explain

• Vacuum alignment: U(1)R,

• Large mass hierarchies: U(1)FN. [Froggatt and Nielsen, 1979]
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Interlude: Non-Abelian discrete flavor symmetries

Dynamical explanation of vacuum alignment. [Altarelli and Feruglio, 2006]

Ingredients:

• Additional symmetry: U(1)R with qθ = 1 y qW = 2qθ = 2,

• All matter fields: qm = 1, Higgs fields: qh = 0,

• Flavon fields: qϕS = qϕT = qξ = 0,

• New: ‘Driving fields’ ϕT0 , ϕ
S
0 , ξ0 with qϕS0

= qϕT0
= qξ0 = 2,

⇒ No coupling of matter and driving fields.

⇒ Only linear coupling of driving fields to flavon fields.

Requiring SUSY to be unbroken at the flavor scale we have:

∂W
∂ϕT0

=
∂W
∂ϕS0

=
∂W
∂ξ0

!
= 0

Solving those ‘drives’ 〈ϕT 〉, 〈ϕS〉, 〈ξ〉 to aligned directions.
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Discrete symmetries of the superpotential

W = µHuHd + κiLiHu

+Y ije HdLiEj + Y ijd HdQiDj + Y iju HuQiUj

+λ
(1)
ijkLiLjEk + λ

(2)
ijkLiQjDk + λ

(3)
ijkU iDjDk

+κ
(1)
ijklQiQjQkLl + κ

(2)
ijklU iUjDkEl

+κ
(3)
ijkQiQjQkHd + κ

(4)
ijkQiUjEkHd + κ

(5)
i LiHuHuHd

+κ
(6)
ij LiHuLjHu.

• Mainly affected by discrete flavor symmetry.
• Mainly affected by discrete R symmetry.
? Can we combine the discrete symmetries ?

Non–Abelian discrete

+ discrete R

}
⇒ Non–Abelian discrete R symmetry.

[Chen,Ratz,AT]

Intriguing fact: Discrete R, non-Abelian discrete, as well as non-Abelian discrete R
symmetries all can originate from extra compact dimensions.

[Kobayashi et al., 2007, Araki et al., 2008, Nilles et al., 2012], Ratz and Vaudrevange 2013 (PC)
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Non–Abelian discrete R symmetries

• We require the symmetry to:

- Contain the succesfull ZR4 solution of the µ problem,
- Act non–trivially in flavor space.

• In order not to break SUSY at the flavor scale, the R
symmetry needs to overstay the flavor symmetry breaking.

- From mixing phenomenology: unbroken ZR4 cannot be family
dependent.

⇒ Only possible way: ZR4 lies in the center of the non–Abelian
group!

GAP scan:
O(G) GF

24 Z3 o Z8

24 S3 × Z4

32 (Z8 × Z2) o Z2

32 (Z4 × Z4) o Z2

32 Z8 o Z4

. . .

[Chen, Ratz, AT]
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A Z3 o Z
R
8 minimal example model

The group Z3 o Z8: [Chen, Ratz, AT]
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A Z3 o Z
R
8 minimal example model

The group Z3 o Z8: [Chen, Ratz, AT]

• 8 singlet and 4 doublet irreps 11−8, 21−4.

• Assignment of fields is fixed by the underlying ZR4 .
- ZR4 charges: θ and matter: 1, Higgses: 0. [Chen et al., 2012b]

⇒ θ Matter Higgses

15/18 15/18/24 11/12

• Spontaneous breaking:

No alignment necessary
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A Z3 o Z
R
8 minimal example model

Minimal example model: [Chen, Ratz, AT]

θ : 15 (⇒ W : 14 = 15 ⊗ 15)(
D1, L1

)
5(

D2, L2

)
5(

D3, L3

)
5

}
15

(
Q1, U1, E1

)
10

}
15(

Q2, U2, E2

)
10

}
15(

Q3, U3, E3

)
10

}
18

Hu : 11 Hd : 12

Spontaneous breaking sector: φ : 12 χ : 22.

• Neutrino masses from (effective) Weinberg operator.
• Spare ‘shaping’ symmetries (commonly used to generate

hierarchies and split quarks & leptons).
• Focus discussion on general issues:

- Consistent assignment of fields to representations,
- Symmetry breaking,
- Possible mass matrix structures,
- Anomaly cancellation.
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A Z3 o Z
R
8 minimal example model

Spontaneous symmetry breaking:

〈χ〉 = v

(
cos θχ
sin θχ

)
and 〈φ〉 = v rφ ,

• ‘Generate’ VEVs y include field ξ : 14 (recall W : 14)

− No coupling to matter sector

− Only linear coupling to flavon fields

}
ξ =Driving field!

• Aligned VEV ⇒ G → Z
R
8 with family dependent ZR8 .

⇒ Alignment has to be avoided for realistic CKM/PMNS mixing
and the possibility of��CP!

F-Term condition for ξ: 0
!

= ∂W
∂ξ

y LO : v2(θχ) =
M2

g1 r2
φ + g2 (2 cos2(θχ)− 1)
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A Z3 o Z
R
8 minimal example model

• Identify terms consistent with all symmetries (W charged!)

• SSB with small mis–alignment 〈χ〉 ∝ (1, δ)T

y Yukawa coupling (mass) matrix structures ε := v/Λ

Ye ∼ Y Td ∼

 ε −ε δ ε rφ
ε −ε δ ε rφ
−ε δ ε 1

 , Yu ∼

 1 1 ε rφ
1 1 ε rφ
ε rφ ε rφ 1

 ,

Mν ∼

1 + ε ε δ −ε δ
ε δ −1 + ε ε
−ε δ ε 1

 .

Model features:

• Can accomodate reality (with 28 parameters),

• Anomaly free by Green–Schwarz mechanism,

• Contains successfull ZR4 solution to µ and proton decay
problem,

• Vacuum alignment without enlarging the symmetry,

• Natural mass hierarchy requires additional symmetry e.g.
U(1)FN.
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Structure of the soft SUSY breaking terms

∫
d4θ

X†X

Λ2
Q†Q

X→FX θ2−−−−−−−→ m̃2 |q|2 , (1)∫
d2θ

X

Λ
y Q3 X→FX θ2−−−−−−−→ Ay q3 , (2)∫

d2θ
X

Λ
WαW

α X→FX θ2−−−−−−−→Mλ λλ . (3)

• If matter fields Q are irrep of non-Abelian discrete symmetry y LO breaking (1)
is flavor diagonal (↔ MFV).

• If���SUSY spurion X is R-charged: (2) and (3) not allowed (but pheno: Mλ 6= 0).

• If X is higher-dim. irrep of a NA discrete flavor symmetry: if FX and 〈Flavons〉
are not aligned y dangerous flavor violation via (2)

• However, if NA flavor symmetry is also R, we can prohibit (2) and have the
possibility to break flavor and SUSY with one single hidden sector.
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Conclusion

• Have discussed MSSM GUTs with R symmetries to solve µ and proton
decay problem,

• Assuming GUT relations and anomaly freedom we have seen that only R
symmetries can solve the µ problem.

• Requiring

(i) anomaly freedom (allowing for GS anomaly cancellation),
(ii) µ term prohibited perturbatively,
(iii) Yukawa coupling and Weinberg effective neutrino mass allowed,

y discrete ZR4 can do the job (unique in SO(10)).

- unbroken R parity subgroup (dim. 4 proton decay absent),
- dim. 5 proton decay operators highly suppressed,
- non-perturbative reintroduction of µ ∼ m3/2.

• In UV complete (heterotic orbifold) models, such symmetries have a
geometrical origin,

• This also applies to non-Abelian discrete flavor symmetries, which we
have shown to be useful in engineering specific flavor mixing patterns (i.e.
reducing the number of free parameters of the flavor puzzle).
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Conclusion
• Combining discrete R with non-Abelian discrete flavor symmetries, we

have introduced non–Abelian discrete R symmetries in the framework of
N = 1 SUSY GUTs.

• A search for viable symmetries that include

- solution to the µ and proton decay problem of the MSSM,
- possible explanation of the flavor structure,

reveals Z3 o ZR8 as the smallest possible group with non–trivial
embedding of the R symmetry.

• A Z3 o ZR8 toy model shows generic features of such models:

- the Abelian R symmetry lies in the center of the group,
- VEV (mis-)alignment, which is neccessary to explain family mixing

and��CP, can be obtained w/o enlarging the symmetry group.

Outlook:

• There is no obstacle for the construction of possibly realistic models with

non–Abelian discrete R symmetries. In such models, it will be interesting

to investigate:

- Implications for���SUSY, i.e. scalar sector soft masses,
- Possible UV origin of the symmetry.
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Thank You!
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